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Dipartimento di Fisica dell’ Università di Pisa and INFN, Largo Bruno Pontecorvo 3,
I-56127 Pisa, Italy

E-mail: Martin.Hasenbusch@df.unipi.it

Received 7 March 2005, in final form 20 April 2005
Published 15 June 2005
Online at stacks.iop.org/JPhysA/38/5869

Abstract
We study the classical XY (plane rotator) model at the Kosterlitz–Thouless
phase transition. We simulate the model using the single-cluster algorithm
on square lattices of a linear size up to L = 2048. We derive the finite-size
behaviour of the second moment correlation length over the lattice size ξ2nd/L

at the transition temperature. This new prediction and the analogous one for
the helicity modulus ϒ are confronted with our Monte Carlo data. This way
βKT = 1.1199 is confirmed as inverse transition temperature. Finally, we
address the puzzle of logarithmic corrections of the magnetic susceptibility χ

at the transition temperature.

PACS numbers: 75.10.Hk, 05.10.Ln, 68.35.Rh

1. Introduction

We study the classical XY model on the square lattice. It is characterized by the action

S = −β
∑
x,µ

�sx�sx+µ̂, (1)

where �sx is a unit vector with two real components, x = (x1, x2) labels the sites on the square
lattice, where x1 ∈ {1, 2, . . . , L1} and x2 ∈ {1, 2, . . . , L2},1 µ gives the direction on the lattice
and µ̂ is a unit vector in the µ-direction. We consider periodic boundary conditions in both
directions. The coupling constant has been set to J = 1 and β is the inverse temperature.
In our notation, the Boltzmann factor is given by exp(−S). Sometimes, in the literature, the
present model is also called the ‘plane rotator model’, while the name XY model is used for a
model with three spin components.

Kosterlitz and Thouless [1] have argued that the XY model undergoes a phase transition of
infinite order. The low-temperature phase is characterized by a vanishing-order parameter and

1 In our simulations, we use L1 = L2 = L throughout.
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an infinite correlation length ξ , associated with a line of Gaussian fixed points. At a sufficiently
high temperature, pairs of vortices unbind and start to disorder the system resulting in a finite
correlation length ξ . In the neighbourhood of the transition temperature TKT, it behaves as

ξ � a exp(bt−1/2), (2)

where t = (T −TKT)/TKT is the reduced temperature, and a and b are non-universal constants.
In subsequent work (e.g. [2, 3]), the results of Kosterlitz and Thouless had been confirmed
and the arguments had been put on a more rigorous basis.

This rather good theoretical understanding of the Kosterlitz–Thouless (KT) phase
transition is contrasted by the fact that the verification of the theoretical predictions in Monte
Carlo simulations had often been inconclusive or even in contradiction. Only starting from the
early 1990s, Monte Carlo simulations allowed one to favour clearly the KT behaviour (2) over
a power law ξ ∝ t−ν , which is characteristic for a second-order phase transition. A typical
example for such a work is [4], where the XY model with the Villain action [5] was studied
on lattices of a size up to 12002.

The difficulties in Monte Carlo simulations might be explained by logarithmic corrections
that are predicted to be present in the neighbourhood of the transition.

In the present paper, we would like to address two puzzling results presented in the
literature that are related to this problem:

• The two most precise results [6, 7] for the transition temperature TKT of the XY model
differ by about eight times the quoted errors.

• The magnetic susceptibility is predicted to scale as χ ∝ L2−η(ln L)−2r with η = 1/4 and
r = −1/16 at the transition temperature2. However, the authors of [10, 11] find in their
Monte Carlo simulations r = −0.023(10)3 and r = −0.0270(10), respectively.

In [7, 13], the authors have shown that XY models with different actions share
the universality class of the BCSOS model. This had been achieved by matching the
renormalization group (RG) flow of the BCSOS model at the critical point with that of
the exact duals [14] of the XY models using a particular Monte Carlo renormalization group
method. As a result of this matching, the estimate βKT = 1.1199(1) = 1/0.892 94(8) for the
XY model (1) has been obtained4. The BCSOS model is equivalent with the six-vertex model
[15]. The exact result for the correlation length of the six-vertex model [16–18] shows the
behaviour of equation (2) predicted by the KT theory. The main advantage of the matching
approach is that the logarithmic corrections and, in particular, also subleading logarithmic
corrections are the same in the XY model and the BCSOS model5.

In a more standard approach, Olsson [6] and Schultka and Manousakis [19] have studied
the finite-size behaviour of the helicity modulus arriving at the estimates 1/βKT = 0.892 13(10)

and 1/βKT = 0.892 20(13), respectively. These authors studied lattice sizes up to L = 256
and L = 400, respectively. While in their approach leading logarithmic corrections are taken
properly into account, subleading logarithmic corrections are missed. This might explain the
mismatch of the results for the transition temperature. Here, we shall resolve this discrepancy
by brute force: we study the helicity modulus (and, in addition, the second moment correlation
length) on lattices up to L = 2048.

2 Note that the analogous result χ ∝ ξ2−η(ln ξ)−2r for the thermodynamic limit in the high-temperature phase does
not hold. In [8, 9], it was argued and numerically verified that instead χ ∝ ξ2−η(1 + c/(ln ξ + u)2 + · · ·) is correct.
3 The authors confirmed their numerical result for r by a study of Lee–Yang zeros [12].
4 In the case of the Villain action, the matching method gives βV,KT = 0.7515(2), while the authors of [4] had found
βV,KT = 0.752(5) fitting their data for the correlation length with the ansatz (2) and a similar fit for the magnetic
susceptibility.
5 A brief discussion of this fact will be given in section 3.
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Having an accurate estimate of TKT and numerical results for large lattice sizes at hand, we
then study the scaling of the magnetic susceptibility. Here, it turns out that the puzzling result
for the value of the exponent r can be resolved by taking into account subleading corrections.

A major purpose of the present paper is to check the reliability of standard methods to
determine the temperature of the transition and to verify its KT nature. This aims mainly at
more complicated models, e.g. quantum models or thin films of three-dimensional systems
with non-trivial boundary conditions, where the duality transformation is not possible, and
hence the method of [7, 13] cannot be applied.

The outline of the paper is the following. In the next section, we give the definitions of the
observables that are studied in this paper: the helicity modulus, the second moment correlation
length and the magnetic susceptibility. Next, we summarize some results from the literature
on duality and the RG flow at the KT transition. We re-derive the finite-size behaviour of the
helicity modulus at the transition temperature. Along the same lines, we then derive a new
result for the dimensionless ratio ξ2nd/L. This is followed by Monte Carlo simulations using
the single-cluster algorithm for lattices of a linear size up to L = 2048 for β = 1.1199 and
β = 1.120 91. Fitting the data for β = 1.1199, we find the behaviour of the helicity modulus
and ξ2nd/L predicted by the theory for the transition temperature, while for β = 1.120 91 there
is clear mismatch. Finally, we analyse the data of the magnetic susceptibility at β = 1.1199.

2. The observables

In this section we shall summarize the definitions of the observables that we have measured
in our simulations. The total magnetization is defined by

�M =
∑

x

�sx. (3)

The magnetic susceptibility is then given as

χ = 1

L2
�M2. (4)

2.1. The second moment correlation length ξ2nd

The second moment correlation length on a lattice of the size L2 is defined by

ξ2nd = 1

2 sin(π/L)

(χ

F
− 1

)1/2
, (5)

where χ is the magnetic susceptibility as defined above and

F = 1

L2

∑
x,y

〈�sx�sy〉 cos(2π(y1 − x1)/L). (6)

Note that the results obtained in this paper only hold for the definition of ξ2nd given in this
subsection.

2.2. The helicity modulus ϒ

The helicity modulus ϒ gives the reaction of the system under a torsion [20]. To define the
helicity modulus we consider a system where rotated boundary conditions in one direction are
introduced: for pairs x, y of nearest-neighbour sites on the lattice with x1 = L1, y1 = 1 and
x2 = y2, the term �sx�sy is replaced by

�sx · Rα �sy = s(1)
x

(
cos(α)s(1)

x + sin(α)s(2)
x

)
+ s(2)

x

(
cos(α)s(2)

x − sin(α)s(1)
x

)
. (7)
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The helicity modulus is then defined by the second derivative of the free energy with respect
to α at α = 0

ϒ = −L1

L2

∂2 ln Z(α)

∂α2

∣∣∣∣
α=0

. (8)

Note that we have skipped a factor 1/T in our definition of the helicity modulus to obtain a
dimensionless quantity. It is easy to write the helicity modulus as an observable of the system
at α = 0 [21]. For L1 = L2 = L, we get

ϒ = β

L2
〈�sx�sx+1̂〉 − β2

L2

〈(
s(1)
x s

(2)

x+1̂
− s(2)

x s
(1)

x+1̂

)2〉
. (9)

3. KT theory

In this section we summarize results from the literature that are relevant for our numerical study
and also derive a novel result for the finite-size behaviour of the second moment correlation
length at the transition temperature.

XY models can be exactly mapped by a so-called duality transformation [14] into solid-
on-solid (SOS) models. For example, the XY model with the action (1) becomes

ZSOS
XY =

∑
{h}

∏
x,µ

I|hx−hx+µ̂|(β), (10)

where In are the modified Bessel functions and hx are integer. The XY model with Villain
action [5] takes a simpler form under duality:

ZSOS
V =

∑
{h}

exp

(
− 1

2β

∑
x,µ

(hx − hx+µ̂)2

)
, (11)

where hx are integer again. This model is also called the discrete Gaussian (DG) model.
In the context of finite-size scaling, one should pay attention to the fact that the boundary
conditions transform non-trivially under duality. For example, periodic boundary conditions
in the XY model require that in the SOS model one sums over all integer shifts h1 and h2 at
the boundaries in the 1- and 2-direction, respectively.

It turned out to be most convenient to study the Kosterlitz–Thouless phase transition using
generalizations of SOS models (see, e.g., [2, 3]).

3.1. The sine-Gordon model

The sine-Gordon model is defined by the action

SSG = 1

2β

∑
x,µ

(φx − φx+µ̂)2 − z
∑

x

cos(2πφx), (12)

where the variables φx are real numbers. For positive values of z, the periodic potential favours
φx close to the integers. In particular, in the limit z → ∞, we recover the DG–SOS model.
In the limit z = 0, we get the Gaussian model (or in the language of high-energy physics, a
free field theory). The sine-Gordon model (using cut-off schemes different from the lattice)
can be used to derive the RG flow associated with the KT phase transition. For β > 2/π the
coupling z is irrelevant, while for β < 2/π it becomes relevant. To discuss the RG flow, it is
convenient to define

x = πβ − 2. (13)
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The flow equations are derived in the neighbourhood of (x, z) = (0, 0). To leading order, they
are given by

∂z

∂t
= −xz + · · · , (14)

∂x

∂t
= −const z2 + · · · , (15)

where t = ln l is the logarithm of the length scale l at which the coupling is taken. Note that
we consider a fixed lattice spacing and a running length scale l, while e.g. in [3] the cut-off
scale is varied. This explains the opposite sign in the flow equations compared with e.g.
[3]. The ‘const’ in the above equation depends on the particular type of cut-off that is used.
Corrections of O(z3) have been computed in [3] and confirmed in [22]. Here, we are mainly
interested in the finite-size behaviour at the transition temperature. Therefore, the trajectory
at the transition temperature is of particular interest. It is characterized by the fact that it ends
in (x, z) = (0, 0). To leading order, it is given by

x = const1/2z. (16)

It follows that the RG flow on the critical trajectory is given by

∂x

∂t
= −x2, (17)

i.e. on the critical trajectory

x = 1

ln l + C
, (18)

where C is an integration constant that depends on the initial value xi of x at l = 1. Taking
into account the next to leading order result of [3], the flow on the critical trajectory becomes

∂x

∂t
= −x2 − 1

2
x3 · · · . (19)

Implicitly, the solution is given by [3]

ln l = 1

x
− 1

xi

− 1

2
ln

1/x + 1/2

1/xi + 1/2
, (20)

where now the initial value xi of x takes the role of the integration constant. The authors
of [3] give an approximate solution of this equation that is valid for xi 	 x. This leads to
corrections to equation (18) that are proportional to ln|ln L|/|ln L|2. However, in our numerical
simulations, we are rather in a situation where xi and x differ only by a small factor. Therefore,
we make no attempt to fit our data taking explicitly into account the last term of equation (20).

An important result of [3] is that corrections proportional to ln|ln L|/|ln L|2 arise from
the RG flow in the (x, z)-plane and are not caused by some additional marginal operators,
which might have different amplitudes in different models. Therefore, the two-parameter
matching of [7, 13] is sufficient to take properly into account the corrections proportional to
ln|ln L|/|ln L|2 (and beyond).

3.2. Finite-size scaling of dimensionless quantities

Here, we compute the values of the helicity modulus ϒ and the ratio ξ2nd/L at TKT in the limit
L → ∞ and leading 1/ ln L corrections to it. Since for both quantities the coefficient of the
order z is vanishing, this can be achieved by computing both quantities at z = 0 (i.e. for the
Gaussian model) and plugging in the value of β given by equation (18).
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3.2.1. The helicity modulus. The helicity modulus can be easily expressed in terms of the
SOS model dual to the XY model:

ϒ = L2

L1

〈
h2

1

〉
SOS, (21)

where h1 is the shift at the boundary in the 1-direction. In this form, we can compute the
helicity modulus in the sine-Gordon model. To this end, we have to compute the free energy
as a function of the boundary shifts h1, h2:

F(h1, h2) = −ln(Z(h1, h2)/Z(0, 0)), (22)

where Z(h1, h2) is the partition function of the system with a shift by h1 and h2 at the
boundaries in the 1- and 2-direction, respectively. From the SG action (12), we directly read
off that F(h1, h2) is an even function of z. Hence, the leading z-dependent contribution is
O(z2). Hence, for our purpose, the purely Gaussian result z = 0 is sufficient. For the action
(12) at z = 0, we get

Z(h1, h2) =
∫

D[φ] exp

(
− 1

2β

∑
x,µ

(φx − φx+µ̂ − dµ)2

)

=
∫

D[φ] exp

(
− 1

2β

[
L1L2

(
d2

1 + d2
2

)
+

∑
x,µ

(φx − φx+µ̂)2

])

= exp

(
− 1

2β
L1L2

(
d2

1 + d2
2

))
Z(0, 0)

= exp

(
− 1

2β

[
L2

L1
h2

1 +
L1

L2
h2

2

])
Z(0, 0), (23)

where we have defined dµ = hµ/Lµ. Note that we have distributed the boundary shift along
the lattice by a reparametrization of the field:

φx = φ̃x + x1d1 + x2d2, (24)

where φ̃x is the original field. It follows that

ϒ = L2

L1

∑
h1

exp
(− 1

2β
L2
L1

h2
1

)
h2

1∑
h1

exp
(− 1

2β
L2
L1

h2
1

) . (25)

Alternatively, we might evaluate the helicity modulus in the spin-wave limit of the XY

model on the original lattice. This is justified by the duality transformation presented in [2] in
appendix D. Here, we are only interested in the Gaussian limit of the model. Under duality,
the β of the Gaussian model transforms as β̃ = 1/β. Secondly, we have to take into account
that even though vortices are not present in the limit z = 0, the periodicity of the XY model
has to be taken into account for the boundary conditions. Hence, the proper spin-wave (SW)
description of the XY model on a finite lattice with periodic boundary conditions is

ZSW =
∑
n1,n2

W(n1, n2)Z(0, 0), (26)

where n1 and n2 count the windings of the XY field along the 1- and 2-direction, respectively.
In the Gaussian model, they are given by shifts by 2πn1 and 2πn2 at the boundaries. The
corresponding weights are

W(n1, n2) = exp

(
− (2π)2

2β̃

[
L2

L1
n2

1 +
L1

L2
n2

2

])
. (27)
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Here, we can easily introduce a rotation by the angle α at the boundary:

ZSW,α =
∑
n1,n2

exp

(
− (2π)2

2β̃

[
L2

L1
[n1 + α/(2π)]2 +

L1

L2
n2

2

])
Z(0, 0). (28)

Plugging this result into definition (8) of the helicity modulus, we get

ϒ = 1

β̃
− L2

L1

∑
n1

exp
(− (2πn1)

2

2β̃

L2
L1

)[ 2πn1

β̃

L2
L1

]2

∑
n1

exp
(− (2πn1)2

2β̃

L2
L1

) . (29)

In the literature, often only ϒ = 1/β̃ = β is quoted and the (tiny) correction due to winding
fields is ignored. We have checked numerically that the results of equations (25) and (29)
indeed coincide. Here, we are interested in the case of an L2 lattice in the neighbourhood of
β = 2/π . One gets

ϒL2,z=0 = 0.636 508 178 19 . . . + 1.001 852 182 . . . (β − 2/π) + · · · . (30)

Plugging in the result (18) and identifying the lattice size L with the scale at which the coupling
is taken, we get

ϒL2,transition = 0.636 508 178 19 . . . +
0.318 899 454 . . .

ln L + C
+ · · · . (31)

Contributions of O(z2) that we have ignored here are proportional to 1/(ln L + C)2 at the
transition.

3.2.2. The second moment correlation length. In this section we derive a result for the
dimensionless ratio ξ2nd/L analogous to equation (31) for the helicity modulus. To this end,
we have to compute the XY two-point correlation function as a series in z. For the limit
L → ∞, the result can be found in the literature. It is important to note that similar to
the helicity modulus, O(z) contributions to the correlation function vanish, i.e. here also the
Gaussian result is sufficient for our purpose. The non-trivial task is to take properly into
account the effects of periodic boundary conditions on the finite lattice. The starting point
of our calculation is the spin-wave model (26). Following definition (24), a difference of
variables φ̃x and φ̃y of the system with shifted boundary conditions can be rewritten in terms
of the system without shift:

φ̃x − φ̃y = φx − φy + p1n1(x1 − y1) + p2n2(x2 − y2), (32)

with pi = 2π/Li . Using this results, the spin–spin product can be written as

�sx�sy = 
 exp(i[φ̃x − φ̃y])

= 
 exp(i[φx − φy]) exp(i[p1n1(x1 − y1) + p2n2(x2 − y2)]), (33)

where we have interpreted φ̃x as the angle of the spin �sx .
The expectation value in the spin-wave limit becomes

〈�sx�sy〉SW =
∑

n1,n2
W(n1, n2)〈exp(i[φx − φy])〉0,0 cos(p1n1(x1 − y1) + p2n2(x2 − y2))∑

n1,n2
W(n1, n2)

,

(34)

where 〈·〉0,0 denotes the expectation value in a system with vanishing boundary shift.
Configurations with a winding (i.e. with a shift in φ̃) give only minor contributions, e.g.
W(1, 0) = 3.487 . . . × 10−6 for an L2 lattice at β = 2/π .

We have computed 〈exp(i[φx − φy])〉0,0 numerically using the lattice propagator. To this
end, we have used lattices up to L = 2048. For details of this calculation, see the appendix.
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The results for 〈sxsy〉 were plugged into definition (5) of the second moment correlation length.
Extrapolating the finite lattice results to L → ∞ gives

ξ2nd/L = 0.750 6912 . . . + 0.667 37 . . . (β − 2/π) + · · · . (35)

Inserting 1
ln L+C

= π(β − 2/π) for the critical trajectory, we obtain

ξ2nd/L = 0.750 6912 . . . +
0.212 430 . . .

ln L + C
+ · · · . (36)

Note that a similar result for the exponential correlation length on a lattice with strip
geometry, i.e. an L × ∞ lattice, can be found in the literature [23]:

ξexp/L = 2β. (37)

Inserting 1
ln L+C

= π(β − 2/π) into (37) gives

ξexp/L = 4

π
+

2

π

1

ln L + C
+ · · · (38)

at the KT transition. This prediction had been compared with Monte Carlo results in [24] for
lattice sizes up to L = 64.

It is interesting to note that the limit

lim
ξexp,∞→∞

ξexp/L|z=L/ξexp,∞ , (39)

where ξexp,∞ is the exponential correlation length in the infinite volume limit in the high-
temperature phase, is exactly known for any z = L/ξexp,∞ [25]. Note that this limit corresponds
to the RG trajectory that flows out of the point (x, z) = (0, 0), while the present study is
concerned with the trajectory that flows into (x, z) = (0, 0).

4. Monte Carlo simulations

We have simulated the XY model at β = 1.1199, which is the estimate of [7] for the inverse
transition temperature, and β = 1.120 91, which is the estimate of Olsson [6] and consistent
within error bars with the result of Schultka and Manousakis [19]. For both values of β, we
have simulated square lattices up to a linear lattice size of L = 2048. The simulations were
performed with the single-cluster algorithm [26]. A measurement was performed after ten
single-cluster updates. In units of these measurements, the integrated autocorrelation time of
the magnetic susceptibility is less than 1 for all our simulations.

For each lattice size and β-value, we have performed 5 000 000 measurements, except
for L = 2048 where only 2 500 000 measurements were performed. We have used our own
implementation of the G05CAF random number generator of the NAG library. For each run,
we have discarded at least 10 000 measurements for equilibration. Note that this is more than
what is usually considered as safe. On a PC with an Athlon XP 2000+CPU, the simulation of
the L = 2048 lattice at one value of β took about 76 days.

In table 1, we have summarized our results for the helicity modulus ϒ , the second moment
correlation length over the lattice size ξ2nd/L and the magnetic susceptibility χ at β = 1.1199.
In table 2, we give analogous results at β = 1.120 91.

First, we fitted the helicity modulus ϒ with the ansatz

ϒ = 0.636 508 178 19 + const/(ln L + C), (40)

where ‘const’ and C are the free parameters of the fit. Note that O((ln L)2) corrections that are
due to e.g. the O(z2) contribution to ϒ are effectively taken into account by the fit parameter
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Table 1. Monte Carlo results for the helicity modulus ϒ , the second moment correlation length
over the lattice size ξ2nd/L and the magnetic susceptibility χ for two-dimensional XY model on a
square lattice of linear size L at β = 1.1199.

L ϒ ξ2nd/L χ

16 0.725 36(7) 0.798 01(17) 133.011(9)
32 0.708 83(7) 0.792 03(18) 452.114(31)
64 0.697 85(7) 0.786 91(18) 1 536.58(11)

128 0.690 01(7) 0.783 08(18) 5 220.99(36)
256 0.684 00(7) 0.779 77(19) 17 729.9(1.2)
512 0.679 26(6) 0.777 45(18) 60 185.8(4.0)

1024 0.675 44(7) 0.775 32(19) 204 160.(15.)
2048 0.672 46(10) 0.773 00(28) 692 146.(74.)

Table 2. Same as table 1 but for β = 1.120 91.

L ϒ ξ2nd/L χ

16 0.726 95(7) 0.798 92(18) 133.174(10)
32 0.710 59(7) 0.792 87(18) 452.856(31)
64 0.699 82(7) 0.788 78(18) 1540.31(11)

128 0.692 25(7) 0.784 62(18) 5235.34(36)
256 0.686 29(7) 0.781 57(19) 17 794.7(1.2)
512 0.681 86(7) 0.779 51(19) 60 436.6(4.3)

1024 0.678 26(7) 0.777 33(20) 205 185.(15.)
2048 0.675 28(10) 0.775 47(28) 696 308.(75.)

Table 3. Fits of the helicity modulus at β = 1.1199 with the ansatz (40). Data with L = Lmin up
to L = 2048 have been included into the fit.

Lmin const C χ2/d.o.f.

64 0.2957(11) 0.668(21) 3.53
128 0.2988(17) 0.740(37) 2.67
256 0.3033(29) 0.847(67) 2.10
512 0.3097(52) 1.01(13) 1.77

1024 0.326(14) 1.43(37) –

C. Also corrections [3] proportional to ln|ln L|/(ln L)2 contribute to the value of C, since
ln|ln L| varies little for the values of L that enter into the fits.

The results of the fits for β = 1.1199 are summarized in table 3 and for β = 1.120 91
in table 4. For β = 1.1199, the χ2/d.o.f. stays rather large even up to Lmin = 512. Also the
value of C is increasing steadily with increasing Lmin. However, this is not too surprising,
since corrections that are not taken into account in our ansatz decrease slowly with increasing
L. However, the results for ‘const’ approach the theoretical prediction 0.318 899 454 . . . as
Lmin increases. For Lmin = 64 and 128, the χ2/d.o.f. for β = 1.120 91 is much larger than
for β = 1.1199. However, for Lmin = 256, it becomes about �1 for β = 1.120 91. This
should however be seen as a coincidence, since the value of ‘const’ is increasing with Lmin

and already for Lmin = 64 the value of ‘const’ is larger than the value predicted by the theory.
We conclude that our fit results are consistent with β = 1.1199 being the inverse transition

temperature, while β = 1.120 91 is clearly ruled out. One should note however that fits with
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Table 4. Fits of the helicity modulus at β = 1.120 91 with the ansatz (40). Data with L = Lmin
up to L = 2048 have been included into the fit.

Lmin const C χ2/d.o.f.

64 0.3382(13) 1.201(14) 16.56
128 0.3473(21) 1.399(42) 9.87
256 0.3616(36) 1.724(79) 1.03
512 0.3688(68) 1.90(16) 0.30

1024 0.377(16) 2.09(40) –

Table 5. Fits of the second moment correlation length of the lattice size ξ2nd/L at β = 1.1199
with the ansatz (41). Data with L = Lmin up to L = 2048 have been included into the fit.

Lmin const C χ2/d.o.f.

64 0.2095(39) 1.62(12) 0.77
128 0.2090(58) 1.61(20) 1.02
256 0.2112(97) 1.69(36) 1.49

Table 6. Fits of the second moment correlation length over the lattice size ξ2nd/L at β = 1.120 91
with the ansatz (41). Data with L = Lmin up to L = 2048 have been included into the fit.

Lmin const C χ2/d.o.f.

64 0.2451(48) 2.32(15) 1.94
128 0.2588(79) 2.79(26) 0.55
256 0.265(13) 3.01(46) 0.63

ansätze such as equation (40) are problematic, since corrections that are not included die out
only very slowly as the lattice size is increased.

Next, we fitted the results for the second moment correlation length with an ansatz similar
to that used for the helicity modulus

ξ2nd/L = 0.750 6912 . . . + const/(ln L + C). (41)

The results of these fits are summarized in table 5 for β = 1.1199 and in table 6 for
β = 1.120 91. In contrast to the helicity modulus, we get a small χ2/d.o.f. already for
Lmin = 64. This might be partially due to the fact that the relative statistical accuracy of
ξ2nd/L is less than that of the helicity modulus ϒ . The result for ‘const’ at β = 1.1199 is
quite stable as Lmin is varied, and furthermore it is consistent with the theoretical prediction
const = 0.212 430 . . . derived in this work. On the other hand, the fit results of ‘const’ at
β = 1.120 91 are clearly larger than the theoretical prediction, and furthermore the value of
‘const’ is even increasing as Lmin is increased. These results are consistent with the analysis
of the helicity modulus: while our results are consistent with β = 1.1199 being the inverse
transition temperature, β = 1.120 91 is clearly ruled out.

4.1. The magnetic susceptibility

The magnetic susceptibility at the transition temperature is predicted to behave as

χ = const L2−η(ln L)−2r · · · , (42)
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Table 7. Fits of the magnetic susceptibility at β = 1.1199 with the ansatz (42). Data with
L = Lmin up to L = 2048 have been included into the fit.

Lmin const −2r χ2/d.o.f.

32 0.9611(2) 0.0699(1) 382.5
64 0.9539(3) 0.0741(2) 119.2

128 0.9485(4) 0.0772(2) 35.7
256 0.9439(6) 0.0798(3) 5.2
512 0.9412(11) 0.0812(6) 1.5

Table 8. Fits of the magnetic susceptibility at β = 1.1199 with the ansatz (44), fixing the exponent
to the value −2r = 1/8. Data with L = Lmin up to L = 2048 have been included into the fit.

Lmin const C χ2/d.o.f.

8 0.8121(1) 4.423(9) 307.2
16 0.8146(1) 4.187(11) 115.0
32 0.8170(2) 3.953(14) 32.5
64 0.8187(2) 3.786(20) 6.6

128 0.8197(3) 3.690(28) 1.5
256 0.8204(5) 3.625(43) 0.4

with r = −1/16 and ‘const’ depends on the particular model. This result can be obtained e.g.
by the integration of

〈sxsy〉 ∝ R−1/4(ln R)1/8 (43)

given in [3] for the correlation function, where R = |x − y|. Leading corrections to
equation (42) are due to the integration constant in equation (18):

χ = const L2−η(ln L + C)−2r · · · . (44)

In [10], Kenna and Irving simulated the same model as studied in this work on lattices up
to L = 256. Using the ansatz (42), leaving r as a free parameter, they find r = −0.023(10),
which is about half of the value predicted by the theory. Later, Janke [11] repeated this analysis
for the XY model with the Villain action and lattices up to L = 512. He finds, also fitting with
the ansatz (42), r = −0.0270(10), which is consistent with the result of Kenna and Irving.

Here, we shall check whether the value of r changes as larger lattice sizes are included
into the fit. To this end, we only discuss the data for β = 1.1199. In table 7, we give results
for fits with the ansatz (42), where we have taken −2r as a free parameter. The χ2/d.o.f. is
very large up to Lmin = 256. For Lmin = 32, our results for −2r are slightly larger than that
of [10, 11]. As we increase Lmin,−2r also increases. However, even for Lmin = 512, the
result for −2r is by more than 70 standard deviations smaller than the value predicted by the
KT theory.

Next, we checked whether this apparent discrepancy can be resolved by adding the leading
correction predicted by the theory as a free parameter to the fit. In table 8, we give our results
for fits with the ansatz (44), where we have fixed −2r = 1/8. We see that already for
Lmin = 128 an acceptable χ2/d.o.f. is reached.

Finally, we performed fits with the ansatz (44), where now also −2r is used as a free
parameter. The results are summarized in table 9. The χ2/d.o.f. becomes acceptable for Lmin

starting from Lmin = 128. Now the fit results for −2r for Lmin = 128 and 256 are consistent
within the statistical errors with the theoretical prediction.
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Table 9. Fits of the magnetic susceptibility at β = 1.1199 with the ansatz (44). Data with
L = Lmin up to L = 2048 have been included into the fit.

Lmin const C −2r χ2/d.o.f.

32 0.685(15) 7.73(45) 0.177(6) 4.92
64 0.747(19) 5.83(55) 0.152(7) 1.97

128 0.789(26) 4.58(76) 0.136(10) 1.49
256 0.857(38) 2.5(1.1) 0.112(14) 0.01

We conclude that the apparent discrepancy with the KT theory that was observed in
[10, 11] can be resolved by adding a correction term, which is predicted by the KT theory, to
equation (42).

5. Summary and conclusions

We have studied the finite-size behaviour of various quantities at the Kosterlitz–Thouless
transition of the two-dimensional XY model. For the helicity modulus ϒ , the value at the
Kosterlitz–Thouless transition in the L → ∞ limit and the leading logarithmic corrections to
it are exactly known. Here, we have derived the analogous result (36) for the second moment
correlation length over the lattice size ξ2nd/L:

ξ2nd/L = 0.750 6912 . . . +
0.212 430 . . .

ln L + C
+ · · · .

We have performed Monte Carlo simulations of the 2D XY model at β = 1.1199 and
β = 1.120 91, which are the estimates of the transition temperature of [7, 6], respectively.
Using the single-cluster algorithm, we simulated lattices of a size up to 20482, which is by a
factor of 52 larger than the lattices that had been studied in [6]. Analysing our data for the
helicity modulus ϒ and the ratio ξ2nd/L, we confirm β = 1.1199 as the transition temperature,
while β = 1.120 91 is clearly ruled out.

Fitting Monte Carlo data with the ansätze (40) and (41) is certainly a reasonable method to
locate the transition temperature and to verify the Kosterlitz–Thouless nature of the transition.
However, one should note that the large values of χ2/d.o.f. of our fits and the running of the
fit parameter C with the smallest lattice size Lmin that is included into the fits, indicate that
subleading corrections that are not taken into account in the ansätze (40) and (41) are still large
for the lattice sizes that we have studied. Since these corrections decay only logarithmically
with the lattice size, it is difficult to estimate the systematic errors that are due to these
corrections.

Finally, we studied the finite-size scaling of the magnetic susceptibility. At the transition,
it should behave like χ ∝ L2−η ln L−2r with η = 1/4 and r = −1/16. However, fitting
numerical data, the authors of [10, 11] found r = −0.023(10) and r = −0.0270(10),
respectively. Including larger lattices into the fits, our result for r moves towards the predicted
value. Extending the ansatz to χ ∝ L2−η(ln L+C)−2r , where C is an additional free parameter
consistent with the theory, the apparent contradiction is completely resolved: for a minimal
lattice size Lmin = 256 that is included into the fit, we get r = −0.056(7).
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Appendix. The correlation function at z = 0

Here, we compute the spin–spin correlation function for z = 0, i.e. for the spin-wave
approximation, for finite lattices with periodic boundary conditions.

To this end, let us first summarize a few basic formulae on multi-dimensional Gaussian
integrals as they can be found in textbooks on field theory.

Our starting point is the generating functional

1

Z

∫
D[φ] exp

(
− 1

2β
(φ,Aφ) + ikφ

)
= exp

(
−β

2
(k, A−1k)

)
, (A.1)

where

1

2β
(φ,Aφ) = 1

2β

∑
x,y

Axyφxφy = 1

2β

∑
x,µ

[
(φx − φx+µ̂)2 + m2φ2

x

]
(A.2)

is the action of the Gaussian model on a square lattice and the partition function is given by

Z =
∫

D[φ] exp

(
− 1

2β
(φ,Aφ)

)
, (A.3)

with ∫
D[φ] =

∏
x

∫
dφx. (A.4)

For a square lattice with periodic boundary conditions, A−1 can be easily obtained using a
Fourier transformation:

(A−1)xy = 1

L2

∑
p

eip(x−y)

p̂2 + m2
, p̂2 = 4 − 2 cos p1 − 2 cos p2, (A.5)

where pi , i = 1, 2, are summed over the values {0, . . . , L−1}·(2π/L). Here, we are interested
in the massless limit m → 0. Note that for

∑
x kx = 0, the contributions to (k, A−1k) from

(p1, p2) = (0, 0) exactly cancel, while for
∑

x kx �= 0, in the limit m → 0, the right-hand side
of equation (A.1) vanishes due to the divergent zero-momentum contributions to (k, A−1k).
Hence, we get

lim
m→0

1

Z

∫
D[φ] exp

(
− 1

2β
(φ,Aφ) + ikφ

)
=

{
exp

[− 1
2β(k, Ck)

]
, if

∑
x kx = 0,

0, otherwise,

(A.6)

with

Cxy = 1

L2

∑
p �=0

eip(x−y) − 1

p̂2
. (A.7)

Note that adding a constant to Cxy does not change the result. Here, we have chosen this
constant such that Cxx = 0.



5882 M Hasenbusch

Now we are in a position to compute the two-point correlation function (34) required for
the computation of the second moment correlation length (5):

〈exp(i2π [φx − φy])〉00 = exp[−4π2βCxy]. (A.8)

Due to translational invariance, it is sufficient to compute g(x) = C(0,0),x , for all lattice
sites x. Employing the reflection symmetry of the lattice with respect to various axes, the
number of sites can be further reduced by a constant factor. Still, the direct implementation of
equation (A.7) would result in a computational effort ∝ V 2 for the calculation of ξ2nd, where
V is the number of lattice points. A more efficient method is discussed below.

First, we compute g(x) with x = (x1, 0) for x1 > 0:

g(x1, 0) = 1

L2

∑
p1 �=0

Q(p1)[e
ip1x1 − 1], (A.9)

with

Q(p1) =
∑
p2

1

p̂2
, (A.10)

i.e. these g(x) can be computed with an effort proportional to V .
Next, we note that g(x) satisfies Poisson’s equation (see, e.g., [27] and references therein):

4g(x) − g(x − (1, 0)) − g(x + (1, 0)) − g(x − (0, 1)) − g(x + (0, 1))

= 1

L2

∑
p �=0

eipx(4 − eip1 − e−ip1 − eip2 − e−ip2)

p̂2
= 1

L2

∑
p �=0

eipxp̂2

p̂2

= 1

L2

∑
p �=0

eipx =
{

1 − L−2, if x = (0, 0),

−L−2, otherwise.
(A.11)

In principle, the remaining g(x) can now be computed recursively using equation (A.11). First,
one has to note that g(x1, 1) = g(x1,−1), where we identify L − 1 with −1, for symmetry
reasons. Therefore,

g(x1, 1) = 1
2 [4g(x1, 0) − g(x1 − 1, 0) − g(x1 + 1, 0) + L−2]. (A.12)

Then, for x2 > 1, one gets

g(x1, x2) = 4g(x1, x2 − 1) − g(x1 − 1, x2 − 1) − g(x1 + 1, x2 − 1) − g(x1, x2 − 2) + L−2.

(A.13)

Unfortunately, rounding errors rapidly accumulate, and the recursion is useless, at least when
using double-precision floating point numbers, for the lattice sizes we are aiming at.

Instead, we have used an iterative solver to solve equation (A.11). We imposed
g(x1, 0) = g(0, x1) obtained from equation (A.9) as Dirichlet boundary conditions. As a solver
we have used a successive overrelaxation (SOR) algorithm. With the optimal overrelaxation
parameter, the computational effort is proportional to L3. We controlled the numerical accuracy
of the solution by computing g(x) from equation (A.7) for a few distances x. Since we could
extract sufficiently accurate results for the limit L → ∞ from lattice sizes up to L = 2048,
we did not implement more advanced solvers such as e.g. multigrid solvers.
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